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LOCALIZED EXPLOSION IN A MATERIAL WITH A MAGNETIC FIELD AND THE 

CONSEQUENCES OF FINITE CONDUCTIVITY IN A MAGNETOHYDRODYNAMIC MODEL 

A. M. Bergel'son, Yu. P. Raizer, and S. T. Surzhikov UDC 538.4 

Introduction. An explosion in an empty space or a rarified gas in the presence of a 
magnetic field is the prototype of a number of natural cosmic and laboratory processes [i]; 
experimental explosions in the upper atmosphere [2, 3] have produced a stream of numerical 
and theoretical works. Magnetic retardation and conversion of plasma cloud energy with 
dispersion in an empty space has been considered in [4, 5]; in [5] this was done by numeri- 
cal solution of two-dimensional gas dynamic equations. On the basis of a hybrid model a 
study was made of collisionless interaction with a magnetized material of unidimensional 
cylindrical [6] and two-dimensional "spherical" [7] plasma clouds. A unidimensional cylin- 
drical explosion was computed in a magnetohydrodynamic approximation in [8]. 

Even without a magnetic effect a large scale explosion at a height is two dimensional 
due to the nonuniformity of the atmosphere over the vertical; detailed calculations are given 
in [9]. With the action of a magnetic field inclined to the vertical, flow becomes three- 
dimensional. Naturally, there is an increase in the difficulty of the calculation, and at 
the highest level the difficulty is aggravated for selecting a physical model (collision- 
collisionless flow, variability of ionization, etc.). Therefore, in order to understand 
these phenomena solutions for simple model problems which take account of some part of the 
actual features of the process are useful. For this purpose in the present work the follow- 
ing step is made compared with [8]: a "spherical" explosion is considered in an MHD-approx- 
imation. By means of appropriate averaging with respect to angles the two-dimensional prob- 
lem in the case of a uniform material is converted to a unidimensional problem. Within the 
scope of sector [9] approximation the case is studied of a nonuniform atmosphere. In order 
to solve these problems a second order of accuracy scheme is used for the method of large 
particles with introduction of artificial viscosity. In conclusion the question is touched 
upon of refining the approximation of ideal conductivity and the conclusions which emerge 
as a result of this. 

Approximate Reduction of the Two-Dimensional MHI)-Problem to a Spherically Symmetrical 
Problem. We turn to gas dynamic description of motion without discussing the question here 
of its justification under specific conditions. When concerning this description there are 
no unconditional contradictions, even natural ionization of a material is sufficient so that 
the conductivity is assumed to be infinite. Then a magnetic field H in a gas moving with 
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velocity u satisfies the equations 

OH/Ot = rot [u X HI, div H = O. (1)  

We shall use spherical coordinates r, O, reading angle 0 from the direction of the un- 
disturbed magnetic field H0, which is uniform at infinity. We assume that the material is 
uniform so that H0 is the axis of symmetry. By assuming that flow is approximately spheri- 
cally-symmetrical, i.e., by ignoring overflow of a substance through an angle, we write gas 
dynamic equations: 

ap t a 
7 + - 7 ~  r~Pu=O' u ~ u ~ ;  

( a~ a~ ) ap 
P - ~ f §  a. § 

(u;) ( ,,) a t P + =. 7~u. -5-i- p e +  +--~-~r r~pu 8 + - - f  - 2  " 

(2) 

(3) 

(4) 

Specific internal energy e is expressed in terms of pressure p and density p: ~ = P/(7 

l)p (y is adiabatic index). The radial component of the pondermotor force 

HO r OHr 
fT =~[rot H X HI,, = ~[ ar (rile) ( 5 )  

is averaged for angles in Eqs. (3) and (4). If we are interested in movement in a given direc- 
tion 0 on the basis of sector approximation, instead of fr we should substitute fr(0). In 
this case the density of the undisturbed material P0 is assumed to be dependent on r, which 
we consider as nonuniformity of the atmosphere. 

In the approximation adopted u~ur does not depend on 8, and Eqs. (i), written in co- 
ordinate form 

0-7- + 7 (r~H~) = 0,. -ST + -7- -57 

1 a (r2H~).~ l a (H e s inO) :O ,  r2 Or rsinO a O  �9 

(6) 

(7) 

permit separation of the variables. Bearing in mind that at infinity H(r, 0) = H0, we as- 
sume that 

Hr = H~(t ,r)  cosO, H o = H ~ ( t , r ) s i n 0 .  (8)  

New functions Hr ~ H0 ~ obey the same Eqs. (6). According to (7) they are connected by the 
relationship 

_! A H~ = ( 9 )  
( 

This equality is useful for transformations as in (7) there is not a variable, which follows 
from (i) and the identity div rot E 0. In order that it is automatically fulfilled the field 
prescribed in the initial condition should satisfy the equation divH = 0. 

By substituting (8) in (5) we see that the radial force which causes magnetic retarda- 
tion diminishes as fr ~ sini0 from the equatorial direction 8 = 7/2 to zero in polar direc- 
tions e = 0, ~. In fact, this leads to deformation at the beginning of a spherical explosive 
wave, and to formation of "constrictions" at the surface of the front drawn out along H0. 

Taking account of (8), (9), and sin 2 0 = 2/3 we present the force in Eqs. (3) and (4) in the 
form* 

2 H~ 0 (H~--~---~~ 2 a H~ 2 2 H~0H~ 
~ -~ ~ = - -  ~ 9 ~ 4  3 8n Or" ( i 0 )  

# 

*The first term which relates to the action of component H perpendicular to the movement di- 
rection may be treated as the action which is averaged with respect to angles for magnetic 

pressure H02/Sz = (2/3) H0~ 
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Equations (2)-(4), (6), and (10) for H0 ~ Hr ~ form a closed system. Undistrubed parameters 
for the material P0, P0, H0, and explosive energy ~ are prescribed. 

Computational Method. Calculations of magnetic gas dynamics equations were carried out 
by the continuous computation method for large particles [10] in a uniform grid with the 
number of nodes 150-300. According to radial distribution of Hr ~ and He ~ known at this in- 
stant force {r is found and Eqs. (2)-(4) are resolved. Then from the distribution u(r) ob- 
tained by means of (6) the fields are worked out and the force in the next instant is found 
from (10), etc. The difference scheme exhibited the property of conservativeness with re- 
spect to total energy (including also magnetic energy) and it had a second order of accuracy. 
Difference methods were studied for introducing an artificial calculation viscosity [ii] 
which provided stability for the solution. Typical values of artificial viscosity coeffi- 
cients (in the notations of [Ii]) are: Q = 0.3, I = i, 6 = 0.2. In selecting the steps 
with respect to time it did not appear possible to consider the central zone where sound 
velocity is very high. Here no such instabilities arose. The Courant number was taken as 
0.5-0.6. The computation procedure was proved by solving a known problem for explosion in 
a material with a counterpressure (gas). With good accuracy the results coincide with those 
provided in [9]. 

Results. Calculation for a uniform atmosphere is made for the same collection of param- 
eters (~ = 3-102o erg, H 0 = 0.50e, P0 = 4.3"10-13 g/cm3, P0 = 1.8"10-3 dY n/cm=, ~ = 5/3),* 
which are adopted (partly) in [5] and to which the cylindrical MHD-model [8] is orientated. 
With these parameters the maximum with respect to angle 8 magnetic 'counterpressure' PM = 
H02/8~ = 10 -2 dyn/cm 2 is greater by a factor of 5.5 than gas pressure P0, which points to 
the preferential magnetic mechanism of retardation of a substance in the stage of shock- 
wave (SW) generation. 

Given in Figs. 1-5 are the calculated results: the distributions of p, p, u, Hr ~ He ~ 
with respect to radius at different instants of time t, and also the form of magnetic force 
lines at instant t = 0.I sec. % In the earlier stages the distribution of p, p, u does not 
differ from the self-modeling distributions for the problem of a strong localized explosion. 
In the later stages the SW gradually degenerates into a weak fading disturbance which propa- 
gates with a velocity close to the Alfenov velocity (H02/4~p0) I/2 = 1.5"10 s cm/sec. Move- 
ment behind the wave gradually ceases. The final pressure leveled out in space tends to- 
wards pMi > P0 in contrast to the nonmagnetic case when with t + ~ pressure returns to atmos- 
pheric P0. In accordance with the equation @d(H/p)/dt = (Hv)u, which emerges from (I) and (2), 
the magnetic field component H e evolves, being proportional to gas density 0 (Figs. 2 and 4). 

Towards the end of the process approximately 25% of the explosive energy is converted 
into magnetic energy. Due to irreversible heating of the gas the SW in a central "empty" 
sphere with R = 1.2"107 cm remains about 30% ~. The rest of the energy is carried away 
with the fading, but embracing all of a large spherical layer, wave. 

*This y relates to the assumption of a considerable degree of dissociation of molecular gas 
and absence of any reactions due to the rareness of collisions. For the purposes of this 
work there is no selection of values of 7. 
#In Fig. 4 Hr ~ > 0, He ~ < 0, and in Fig. 5 polar axis z is directed along H0. 
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Shown in Fig. 6 are the results of the case of an exponentially decreasing density 
P00 = P0 exp(-r/A) with & = 4.2"106 cm and the same value of P0 at the point of the explosion. 
The solution describes propagation of an explosive wave upward with the slope of H0 to the 

vertical of approximately 2/V~z 54 ~ . It can be seen that the SW front first slows down in 
accordance with the general pressure drop in the wave, and then it starts to accelerate since 
it spreads through a more and more rarified medium. 

As with absence of a magnetic field, the wave front recedes to infinity in a finite 
time. However, the reason for unlimited wave acceleration is now different. In the absence 
of a field the SW accelerates due to an increase in its amplitude, i.e., the pressure ratio 
in the front. There is a kind of accumulation of energy behind the SW front. In contrast, 
in the absence of a constant magnetic counterpressure the SW amplitude falls and the wave 
gradually degenerates into a weak disturbance. The propagation rate of the disturbance it- 
self increases, which equals the Alfenov velocity v A = (H02/4~p) z/z + ~ since magnetic pres- 
sure remains unchanged and gas density decreases exponentially. 

For a number of reasons it was not possible to prolong computation to long times, and 
the question of the so-called "breakthrough" of the atmosphere under real conditions when 
there is a magnetic field remains open. As is well known, in the absence of a magnetic field 
due to an exponential tendency of pressure towards zero there is no force which could main- 
tain the flow of gas upwards. In principle a magnetic field provides this force. The ques- 
tion becomes thus: whether after all mechanical equilibrium* is established in which immo- 
bile gas will be distributed over the height so that the sum of gas and magnetic pressures 
taking account of the freezing nature of the field in the substance becomes constant over 
the height. In the future we hope to take this problem to the end. 

Nondissipative Effects Caused by Finite Conductivity of the Medium. The ideal has been 
implanted that refinement of MHD-equations for an ideally conducting medium connected with 
the finite nature of conductivity consists simply of calculating dissipative effects: dif- 
fusion of the magnetic field in the plasma, and the release of the Joule heat of flows. In 

*Naturally, temporary equilibrium, while the force of gravity, thermal conductivity, etc., 
do not come into action. 
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the problem (of the type considered above) these corrections do not add anything qualita- 
tively new and they are verylsmall [8]. We turn attention to another effect of nonideal 
conductivity leading maybe not necessarily to large effects, but of a qualitative character 
which within the scope of the MHD-model have not apparently been considered. 

Plasma conductivity is a = e2n/m~m (n is density of electrons, Vm is effective frequency 
of their collisions with atoms and ions). Idealization of a = ~ corresponds to the limit 
~m + 0 or n + ~. Although disregard for dissipation is equivalent to the first, all the same 
the MHD-model of an ideally-conducting medium relates to the second. The current density in 
electrically neutral plasma is 

j = e n ( u  - -  v) = (c14~) rot H, (ii) 

where v is the average, i.e., hydrodynamic, electron gas velocity (as previously the dis- 
placement current is not considered). In the equation for movement of an electron gas 

n m v  = - - e n ( E  + c-l[v • H]) + n m v m ( u  - -  v) --  VPe ~ 0, (12)  

and as  a lways  we d i s r e g a r d  t h e  i n e r t i a  t e rm.  Th i s  i s  c o r r e c t  due t o  t h e  f a c t  t h a t  unde r  t h e  
a c t i o n  o f  l a r g e  Coulomb f o r c e s  which  p r o v i d e  e l e c t r i c a l  n e u t r a l i t y  f o r  t h e  p l a sma ,  v ~ u ,  
and t h e  mass o f  an atom M >> m. By combin ing  (12)  w i t h  an e q u a t i o n  o f  m o t i o n  f o r  a heavy  
p a r t i c l e  gas  which  c o n t a i n s  s i m i l a r  t e r m s  f o r  e l e c t r i c  and L o r e n t z  f o r c e s  and an exchange  o f  
e l e c t r o n s  w i t h  a p u l s e ,  we a r r i v e  a t  t h e  p r e v i o u s  e q u a t i o n  f o r  gas  m o t i o n  (3)  in  which  p i s  
t h e  t o t a l  p r e s s u r e  o f  heavy  p a r t i c l e s  and e l e c t r o n s ,  and in  a c c o r d a n c e  w i t h  (11)  t h e  p o n d e r -  
moto r  f o r c e  has  t h e  p r e v i o u s  form f : c-a[j • H]. By o m i t t i n g  t h e  n o t  v e r y  i m p o r t a n t  t e rm 
7pe,  wh ich  d e s c r i b e s  t h e  d i f f u s i o n  c u r r e n t ,  we o b t a i n  f rom ( l l )  and (12)  Ohm's law 

j ~ o(E + c-l[v • H]), E : - - c - l [u  • H] + [j • H ] / e n c + j / ~ .  

By s u b s t i t u t i n g  E in  t h e  e q u a t i o n  f o r  e l e c t r o m a g n e t i c  i n d u c t i o n  we f i n d  t h e  f i n a l  w e l l -  
known e q u a t i o n  f o r  H 

c 2 

aIt = rot [u X H] - -  , c  rot i _  [rot H X H] - -  rot ~-a rot H, 
Ot a,~e n 

(13) 

which generalizes (i) in the case of ideal conductivity. Equation (13) is converted into 
(i) not simply with o + ~, but only with n + ~, and without reference to the assumption 
about Vm, whether collisions are rare or not. In fact, according to (ii) the limit n ~ 
corresponds to "indistinguishability" of v and u , and the characteristic equality E = c -I" 
[u x HI for a moving superconductor. 

With finite conductivity in the right-hand part of (13) apart from the third term, part 
of which describes diffusion permeability of the field towards plasma, the second term (we 
call it N) appears not to be connected with collision and dissipative processes. For a plane 
or unidimensional cylindrical MHD-flow, when vector H is perpendicular to the coordinate on 
which it depends, N ~ 0. In the two-dimensional (and naturally the three-dimensional) case, 
i.e., with a localized explosion, N # 0. In order of value N is ~ E ~e/Vm ~ eH/mc~ m times 
greater than the third "diffusion" term in (13) (~e is cyclotron frequency, 8 is the so-called 

Hall parameter). 

For the version computed above 8 ~ 104 . However, compared with the main (first) term, 
which relates to the model of an ideally conducting medium, the value of N may also be small. 
The ratio of N to the first term is of the order 61 = cH/4~enuL (L is scale of length in 
which the field changes). For our parameters if the gas is considered once ionized, the 
ratio 61 ~ 10-3, but with incomplete ionization it may appear to be marked. The question of 
the degree of ionization ~, and consequently about the qualitative side of the work, requires 
a special study of the mechanisms and kinetics of ionization which is outside the scope of 
this work. However, we emphasize that this is in general a question about the ratio of N 
and the main term, and not about the ratio of N and the diffusion term. Values of ~m and 
are not excessively sensitive to the degree of ionization. The frequency of collisions de- 
pends on a not through the density of the disperser (atoms or ions), but only through the 
dispersion cross section (gas kinetic or Coulomb). 

We consider qualitatively the effects which arise due to considering the finiteness of 
n. This may be done on the basis of the solution obtained above with n = = by taking it as 
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a zero approximation and substituting correction terms in which n -I figures. VectorlN has 
a component N e, which leads to generation of an azimuthal magnetic field H e. By substituting 
(8) in N e we find that H e ~ sin 8 cos 8. The azimuthal field is absent at the poles and at 
the equator it is a maximum at angles of 45 and 135 ~ to the polar axis of H0. This result 
was also obtained in [7] within the scope of a hybrid model where naturally the same equal- 
ities (ii) and (13) figure. 

If in the model with n, o = ~ there is only azimuthal current Je, then in the following 
approximation the components Jr and J8 appear. Lines for an additional current form in 
meridional planes ~ = const of a system of concentric contours, one in each of the four quad- 
rants. In space current lines form, as it were, two sets of planes enclosing each other; 
one above and the other below the equator. Interaction of current Jr with field H 8 and cur- 
rent J8 with field H r leads to development of an azimuthal component for pondermotor force 
/~ which twists the plasma expanding from the center around polar axis :H0. The twisting 
force is symmetrical with respect to the plane of the equator and it tends towards zero at 
the poles. Part of the explosive energy is converted into rotary motion. 
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